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A diffusion equation is obtained for multicomponent dense gases and liq- 
uids. Approximate methods for description of mass transfer in multicom- 
ponent mixtures are analyzed. 

Mass transfer in chemical technology processes occurs under such complex condi- 
tions that it becomes impossible not only to solve the problem of mass transfer even 
in binary mixtures, but also to formulate the problem precisely, because of the un- 
certainty of the boundary conditions. Thus experimental methods are utilized, em- 
ploying the equation 

N = ~ (gi  - -  Y) = ~ (x - -  xs) .  (i) 

Use of Eq. (I) is also justified by the fact that simultaneously with develop- 
ment of computation technology the complexity of mass-transfer problems has in- 
creased, so that the problem of machine time expenditure is always relevant. 

In the case of multicomponent mixtures (MCM) the dimensionality of the problem 
increases and it is practically impossible to maintain the multiformity of MCM in 
experiment. The single solution presently available is to employ results obtained 
for binary mixtures in MCM. But basic difficulties then arise, connected with the 
fact that the system of mathematical-physics equations describing the mass-transfer 
process in MCM differs from the corresponding system for binary mixtures. The mo- 
tion equation differs only in a more complex dependence of the viscosity coefficient 
on mixture composition, while the pressure tensor for MCM is no different than that 
of a pure gas [I]. The convective diffusion equations for MCM and binary mixtures 
do not coincide. Toor [2] and Stewart and Prober [3] have developed a method for 
transforming the MCM diffusion equation to binary form. This allows use of an iden- 
tical system of mass-transfer equations for MCM and binary mixtures. 

Two assumptions made in [2, 3] should be noted: First, it is assumed that the 
diffusion coefficients in the generalized Fick's law remain constant upon change in 
concentration from the flow core to the phase boundary; second, it is assumed that 
the effective interphase surface in division of MCM is equal to the surface in divi- 
sion of a binary mixture possessing the same physicochemical properties at the same 
phase expenditures. 

These same assumptions are also used, strictly speaking, in employing Eq. (i) 
for binary mixtures of dense gases and liquids, since in the latter the diffusion 
coefficient as a rule is strongly dependent on composition. 

Because of the complexity and incomplete nature of the theory of mixtures of 
dense, gases and liquids, experimental material is used to describe the dependence of 
diffusion coefficients on composition, for example, the rule of additivity [4, 5]. 
In a number of studies of diffusion in binary liquids a linear dependence of the com- 
plex ~12[(d In al)/(d In xl)]composition was noted [4, 6]. 

Most probably, this is an accidental coincidence. The complex ~12[(d in al)/ 
(d In xl) arises in consideration of the thermodynamic equations for irreversible 
processes. In fact, it follows from the relationships for generation of entropy 
that 
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N ~ = _ L n (  1 d,u~_~ 1 dp~ ) 
�9 tn~ d% t n ~  dr a " ( 2 )  

Using the Gibbs-Duhem equation and the relationship d~l/dra = RT[(d In al)/dra],E q. 
(2) may be transformed to the form 

N ~ = - - c D I = (  d l n a  1 ) dx  1 
\ d In xl  d% 

(.3) 

From this it is completely impossible to make any conclusions as to the con- 
centration dependence of~12, since the thermodynamics of irreversible processes, 
like the theory of time-correlative functions [7], gives only symmetry relation- 
ships. 

The concentration dependence of the diffusion coefficients in gases and liquids 
may be obtained by using the kinetic equation of Enskog [6]: 

afi af~ 
a ~  + c ~  ar~ 

X f~ (r, c') �9 [p (r + ekip, c'1 ) -- qo r - -  ~-  k~p fi (r, c) �9 fv (r -- eke;, q) e~pgde' dc 1. 
\ 

(4) 

Equation (4) for isobaric isothermal diffusion can be solved by using Enskog's 
idea of expansion of the functions of akip in a Taylor series and expansion of fi 
in a series near the Maxwell velocity distribution. As a result the system of in- 
tegrodifferential equations (4) reduces to a system of integral equations: 

_CoEFv[~xp+6~p( l  - 6~ ) _ Z 6 ~ ] = ! E 4 v ( ~ U ~ ) ;  4 i=1 ,  2, 3 . . . . .  
Xp n 

p P 

4 

Z = - -  ~nc~3qo, 6~ (3)  = ,~" (c) - ~ (e'), 
3 

l ip (,~r = ~ FiF p [6i (~}l) C,~) q- 6 v (~;(~) C~)] cqpgde'dc ~. 

(5) 

Since the right side of Eq. (5) coincides with the right side of the correspond- 
ing expression for solution of the Boltzmann kinetic equation [I], by using an anal- 
ogous expansion of the unknown ~i in Sonin polynomials, performing orthonormaliza- 
tion, and then considering successively binary and multicomponent mixtures, we ob- 
tain 

3 1 (6) 
~iPq~iv = 4 -  " nui. .  oo ' 

dx~ _ q~ - -  ( 7 )  - E N~% Nvx~ 
n qhpO~v 

P 

Here uinr, 00 .are irreducible integrals" coinciding with the corresponding integrals 
for a gas wlth average pressure [i, 6]; ~iD and ~ip are diffusion coefficients and 
collision-frequency increase coefficients ~or binary mixtures consisting of compo- 
nents i and p. 

Since the integrals Uip,00 are independent of concentration [I, 6], it follows 
from Eq. (6) that 

_ @9 = ~o (8) 
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TABLE i. Diffusion Coefficients 
in Binary Liquid Mixtures, @ ij 
i05 cme/sec 

Experiment ] By Eq. (i3) By Eq. (21) 

0,819 
0,856 
1,049 
1,063 
1,128 
I, 266 
1,707 
1,863 

0,574 
0,547 
0,545 
O, 493 
0,477 
0,456 
0,407 

O, 664 
1,087 
1,350 
1,726 

Methanol - n-propanol 

[ 0,825 
j 0,850 
I 0,945 

1,040 
J t ,141 
j 1,251 

1,611 
I 1 895 

Isobutanol- n-propanol 

0,574 
0,551 
0,532 
0,493 
0,475 
0,459 
0,407 

Methanol-isobutanol 

0,697 
0,983 
I, 390 
1,840 

0,826 
O, 856 
0,951 
1,049 
1,155 
1,262 
I, 625 
1,895 

0,551 
0,532 
0,493 
0,476 
0,459 
0,407 

0,603 
0,952 
1,350 
I, 820 

TABLE 2. Diffusion Coefficients of Toluol--Chloro- 
benzol-BromobenzolMixture, Dx 105 cm2/sec 

Dli 

experimental 

1,85+ 0,07 
1,57• 0,09 
2,13~.0,10 
1,85+ 0,11 
2,01• 
1,77+0,11 

calculated 

1,75 
1,58 
2,01 
1,78 
1,88 
1,82 

Dz2 

experimental 

1,80+0,08 
1,61• 
2,06+0,11 
1,84+0,1i 
1,89+0,11 
1,52• 

calculated 

1,72 
1,55 
2,06 
1,76 
1,82 
1,59 

experimental 

--0,06• 
0,08~0,10 
0,05• 
0,05a0,16 

--0,02• 
-0,04=0,03 

calculated 

-0,02 
--0,02 
--0,06 
--0,01 
--0,03 
--0,01 

TABLE 3. Diffusion Coefficients of Methanol-n-Prop- 
anol-lsobutanol Mixture, D x l0 s cm2/sec [using Eq. 
(12)] 

experimental calculated experimental 

1,04 1,0l 0,88 
0,91 0,90 0,72 
0,76 0,77 0,62 
1,50 1,50 1,38 

calculated 

0,81 
0,70 
0,59 
1,44 

experimental 

0,03+0,02 
0,03+0,04 
0,03--0,03 
0,21+0,14 

Dis 

calculated 

0,01 
--0,01 

0,00 
--0,06 

TABLE 4. Comparison of Coefficients ~" ij, as Deter- 

mined from Eqs.(12) and (20) for Thrre-Component 
Ethanol Mixture 

C~12 

O, 975 
0,900 
0,758 
1,480 

By Eq. (t2) 

1,020 
0,935 
0,790 
1,550 

0,694 
0,647 
0,530 
1,970 

By Eq.(20) 

0,900 
0,900 
0,738 
1,470 

1,000 
0,935 
0,772 
1,530 

3;3 

0,693 
0,648 
0,527 
1,070 
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Substituting Eq. (8) in Eq. (7) it is simple to obtain 

dx i t ~ N i x  p - N p x ~  , 

dr  a n ~ COl; 
P 

where 

(9) 

co;~ ~p co0_ % ~ 0 (i0) - -  ~p  - -  f ~ ) p ~ .  

~o ~o 

It is evident from Eq. (i0) that the coefficients of multicomponent diffusion 
' = ~' , and the ratio of collision-frequency coef- possess symmetry properties: coip pi 

ficients of diffuse solutions are inversely proportional to the ratio of the diffu- 
sion coefficients of these solutions. 

The values of the multicomponent diffusion coefficients may now be expressed 
in terms of the diffusion coefficients of dilute solutions and compositions of the 
multicomponent mixture, if it is considered that according to Hirschfelder's recom- 
mendations in the first approximation the coefficient of molecular collision-fre- 
quency increase for a mixture is defined by 

= ~ x~%. (Ii) 
k 

Substituting Eq. (II) in Eq. (I0), we have 

COlp = I = I (12) 
~_~ :~o x~ _, x~ E ~ 

o o xu ~ ~ - - o ~ - -  xk COo coo ~zt~ COp~ COp~ cD~p ~ p~ 
k~ i , ,  p 

For a binary mixture, in particular, it follows from Eq. (12) that 

COIo_ 1 ( 1 I .) (13) 
co02 ~ x~ coo ~?~ 21 �9 

Equations (12) and (13) were verified by the experimental data of [4, 5]. A 
comparison of ~c calculated with Eq. (13) and experimental ~e coefficients is pre- 
sented in Table i. 

In Tables 2 and 3 diffusion coefficients Dij obtained from Eqs. (9) and (12) 
are compared with experimental data on diffusion in three-component mixtures, for 
example: 

dxl  dx  a 
N~ = - D,I ~f -;- D~ --=- (14) 

dr ' 

Dn = q)'m [x~CO~3 .- (1 -- xl) CO'13] 
xS~3 + x2CO'~3 + z3COI2 ' ( 15 )  

D1 a = xlco~3 (COl2 - -  COl3) 
x~CO~3 - -  x~CO]3 + x3CO]2" ( 1 6 )  

For the toluol-chlorobenzol-bromobenzol mixture the maximum deviation from ex- 
periment does not exceed 6%, while for the alcohol mixture it comprises 3% for DII 
and 8% for D~3. 

Thus, in the first approximation the diffusion coefficients in a multicomponent 
mixture can be calculated on the basis of data on diffusion in dilute solutions. 
These coefficients, as follows from Tables 2 and 3, change significantly with mix- 
ture composition. Thus it follows from the first assumption made by Toor [2] and 
Stewart and Prober [3] that their methods are approximate. They are more accurate, 
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Fig. i. Comparison of experimental 
and calculated diffusion coefficients 
(cm2/sec) for mixtures methylcyclo- 
hexane-aniline (a) and toluol-methyl- 
cyclohexane (b). For a) PI2/@I = 
8.07; for b) PI2/~I = 1.52; I) 60 • 
0.01; 2) 45 • 0.01; 3) 25 • 0o01 ~ 

the lower the motive forces of the process, i.e., the lower the difference in con- 
centration in the flow core and at the boundary. 

The diffusion equations obtained in this case permit calculation of diffusion 
coefficient matrices and realization of the methods of [2, 3] for both gas and liq- 
uid phases. 

One must only keep in mind that Eqs. (ii) and (12) do not describe cases where 
the dependence of diffusion coefficients on composition has a minimum, as, for ex- 
ample, in such nonideal liquid mixtures as methylcyclohexane-aniline, or toluol- 
methylcyclohexane [8]. For such mixtures we use the more accurate dependence of 
on composition [9]: 

qD=l + a ~ _ a x i x , b i , +  . . . .  (17) 
i i 

Replacing unity in Eq. (17) by ~x,, we obtain 
i 

Xx,(  § �9 (18) 
i i 

One additional such change gives 

i#i  i#i  
(19) 

where ~i = i + abii and Pij denote the quantities (i + abij). 

From Eqs. (8)-(10) we can obtain a formula more accurate than Eq. (12) for 
description of ~'ij: 

,) o 0 

Numerical values of the ratios PZm/~l can be found from data on diffusion in 
binary mixtures: 

x~ x~ +2 xlx+ PI+ (21) 

Equation (21) agrees satisfactorily with the experimental data of [4, 5, 8] 
(Table i, Fig. i). In good agreement with experiment it indicates the presence of 
a minimum in the curve with the coordinates diffusion coefficient-concentration. 

For alcohol mixtures the results obtained with Eqs. (20) and (12) practically 
coincide. 
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No less important is the problem of proper consideration of the effective in- 
terphase surface upon transition to multicomponent mixtures. It must be considered 
that on various portions of the interphase boundary in a stable bubble layer, for 
example, the effectiveness of the mass-transfer process will vary, because of hy- 
drodynamic and geometric specifics (bubbles, jets, droplets, curvature, stability, 
etc.). It is thus natural to introduce the following concepts making use of distri- 
bution functions. At a point r to r + dr there is contained an interphase surface 
a(r)dr, characterized by a mass liberation coefficient B(r). The quantity of matter 
transferred is then defined as 

G = ~ [V] (r) - -  b' (r)].t~ (r) a (r) dr, ( 2 2 )  
V 

For a multicomponent mixture 

Of = S ~ Bii (r) [V~ (r) -- Vjf (r)] a (r) dr. (23 ) 
V ]#i 

At the point r tor + dr the values of Bij(r) may be found by Toor's method [2]. 

However, at the present time data on a(r) and B(r) are absent, and we usually 
take 

6 = ~ j  (Vi - -  V)dF, (24) 

dO _ ~(Vf-- Y), (25) 
dF 

dG~ _ E B~j (Vj - -  V j j). ( 2  6 )  
dF . .  

Considering Eqs. (22), (23), (25), and (26) it is easy to see that they are ap- 
proximate and become exact only when the distribution functions a(r) and B(r) are 
independent of r. 

NOTATION 

N, mass flow; F, Maxwell distribution function; ~, molecular velocity-dependent 
coefficients; m, diffusion coefficient; I, integral operator; a, activity; x, y, 
molar fractions in liquid and gas phases; f, distribution function; r, coordinate; 
c, molecular velocity; C, velocity in gas-related coordinate system; k, unit vector 
in direction of centers of colliding molecules; e, unit vector in direction of rela- 
tive velocities of colliding molecules; n, number of molecules per unit volume; ~, 
collision-frequency increase coefficient; B, B, mass liberation coefficient; ~, 
molecular diameter; oii, differential scattering section; ~i~, Kronecker delta. In- 
dices: i, j, p, l, k,-mixture components; f, interphase surface; a, vector; 0, di- 
lute solution. 
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